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Large-area, thin-film semiconductor devices often exhibit strong fluctuations in electronic prop-
erties on a mesoscale level that originate from relatively weak microscopic fluctuations in material
structure such as grain size, chemical composition, and film thickness. Amplification comes from
the fact that electronic transport through potential barriers is exponentially sensitive to the local
parameter fluctuations. These effects create new phenomena and establish the physics of large-area,
thin-film devices as a distinctive field of its own, quite different from that of microelectronics. We
show that (i) large-area semiconductor thin-film devices are intrinsically nonuniform in the lateral
directions, (ii) the nonuniformity can span length scales from millimeters to meters depending on
external drivers such as light intensity and bias, and (iii) this nonuniformity significantly impacts the
performance and stability of, e.g., photovoltaics, liquid crystal displays, and light emitting arrays.
From the theoretical standpoint our consideration introduces a new class of disordered systems,
which are random diode arrays. We propose a theory describing one class of such arrays and derive
a figure of merit that characterizes the significance of nonuniformity effects. Our understanding
suggests some methods for blocking the effects of nonuniformities.

PACS numbers: 73.50, 73.61.J, 73.61.G, 78.66.H, 85.30

I. INTRODUCTION

Large-area semiconductor thin films play a key role
in such rapidly growing fields as terrestrial photovoltaics
(PV), flat-panel emissive displays, and liquid-crystal dis-
plays (LCD). With active-area requirements of about one
square meter for PV and 0.1-1m2 for displays, the films
cannot be deposited epitaxially (crystalline) but are ei-
ther polycrystalline or amorphous. In this paper we show
how the intrinsic polycrystalline or amorphous charac-
ter of the films together with electronic transport that
is exponentially sensitive to fluctuations in local mate-
rial parameters, leads to strong fluctuations in electronic
properties. Controlling or blocking the effects of these
fluctuations can be the key not only to the fabrication
of a high performance device, but is often critically im-
portant to reducing the performance deterioration over
time.

We believe that the nonuniformity effects create new
phenomena and establish the physics of large area thin-
film devices as a distinctive field of its own, quite differ-
ent from that of microelectronics. This paper is aimed at
presenting the above-defined field to a broader audience.
It generalizes recent data for major semiconductors that
we have managed to relate to each other in the frame-
work of a unique approach. In our work we derive a
fundamental length scale that discriminates between the
cases of small and large-area devices, and beyond which
a new physics emerges. Large-area electronics is shown
to be intrinsically nonuniform, which significantly affects
the device physics. We feel that enhanced understand-
ing of the effects of nonuniformities will help to improve
thin-film device performance and stability in many ap-
plications. From the theoretical perspective, our con-
sideration introduces a new type of disordered systems,

random diode arrays), which exhibit nontrivial behavior,
are practically important and remain poorly understood.

FIG. 1: CdTe/CdS solar cell structure (not to scale). Poly-
crystalline structure of CdTe film is schematically shown.

For illustration, we shall focus our discussion on a
simple PV cell, although our argument is extendable to
other devices. The essential cell structure (Fig.1) is a
thin-film p-n junction a couple of microns thick (for ex-
ample, CdTe/CdS) sandwiched between two electrodes,
one of which is transparent to light (typically, a trans-
parent conductive oxide, TCO). The grains have com-
parable or somewhat smaller lateral dimensions, 0.1 - 1
µm. Both one-dimensional, 1D (stripe cell) and 2D (dot
cell) devices are of interest, with characteristic linear di-
mensions d ∼2 - 10 mm. The PV cell parameters and
their order-of-magnitude estimates under a light inten-
sity of one sun (100 mW/cm2) are: open-circuit volt-
age, Voc∼1V, and short-circuit current density, jsc∼10−2



2

A/cm2. The transparent electrode sheet resistance is typ-
ically ρ ∼ 10Ω/¤, while the other electrode resistance is
negligibly small.

Our emphasis in this work is on the lateral device
nonuniformities. These originate from relatively weak
local fluctuations in the material parameters such as
grain size, chemical composition and film thickness, but
they translate into strong fluctuations in the electronic
properties. The amplification comes from the fact that
electronic transport through the potential barriers is
exponentially sensitive to the local parameter fluctua-
tions in both the temperature-activated and tunnelling
modes. Indeed, for a barrier of height VB and width
a, the corresponding barrier transmission probabilities,
exp (−VB/kT ) and exp

(−2a
√

2mVB/~
)

typically have
exponents much greater than one. Hence, their rela-
tively small variations cause significant effects. Here k
is Boltzmann’s constant, T is the temperature, m is the
electron mass, and ~ is Planck’s constant. The barriers
in PV cells are associated with the device junctions (p-
n, semiconductor/TCO, and semiconductor/metal) and
grain boundaries. The current density vs. bias voltage
V is specified in the ideal photo-diode model as1

j = jT

[
exp

(
eV

kT

)
− 1

]
− jsc, (1)

Voc =
kT

e
ln

(
jsc + jT

jT

)
.

The short circuit current jsc is typically linear and the
open-circuit voltage Voc is logarithmic in the light inten-
sity. Also, it is typical that the thermal current compo-
nent, jT is much less than the photocurrent component
jsc for all practically interesting light intensities.

Eq. (1) can be equally represented in the form

j = j0

{
exp

[
e(V − Voc)

kT

]
− 1

}
, j0 ≡ jcs + jT , (2)

which shows that Voc is intimately related to the junction
barrier height. Its fluctuations become exponentially sig-
nificant if they exceed kT . The available data below (see
Sec. II) show that the latter inequality does obey.

We recall that the thermal current jT is significantly
determined by the system potential barriers1 and thus is
exponentially sensitive to the material parameter fluctu-
ations. To the contrary, jsc is relatively uniform because
the p-n junction electric field is everywhere strong enough
to effectively separate the light generated electrons and
holes determining jsc (this is also reflected in the device
high quantum efficiency, typically ∼ 0.6− 0.9).

In the terms of the parameters in Eq. (2), the latter
consideration means that j0 is relatively insensitive to the
material fluctuations, while Voc fluctuates considerably
and is intimately related to fluctuations in the system
potential barriers. Because Voc has exponentially strong
effect on the current [Eq. (2)], it is considered the main
fluctuating parameter in the system.

Experimentally, lateral nonuniformities are often
masked by low resistance contacts that level out the elec-
tric potential variations across the cell through lateral
current flow in the contacts. As explained in detail be-
low, lateral currents cause resistive losses and nonuni-
form device degradation. Therefore, although low re-
sistance contacts make the nonuniformities less visible,
they contribute detrimental side effects. To circumvent
this masking effect, the nonuniformities are best studied
either in unfinished devices (without metal contact), in
devices with intentionally high resistance contacts, or in
processes that are relatively independent of metal con-
tacts, such as charge carrier recombination or collection.

Lateral nonuniformities can also show up in param-
eter variations among nominally identical devices. For
example, it is typical to observe noticeable (∼10%) ex-
perimental differences between cells ∼1 cm apart on the
same substrate, as is illustrated in Fig. 2. This obser-
vation is not often addressed in academic reports and
remains mostly folklore. However, the issue of such
variations becomes commercially important in large-scale
production2.

FIG. 2: An example of differences in initial efficiencies and
degradations of four nominally identical CdTe/CdS solar cells
on the same substrate.

Our paper is organized as follows. In Sec. II we find it
appropriate to give a brief review of the relevant data on
major PV material nonuniformity effects (which, to our
knowledge, is the first such review ever published). Sec.
III introduces new theoretical concepts of random diode
arrays and lateral screening in a device underlying the
physics of laterally nonuniform devices. A theory of ran-
dom diode systems has never been fully developed and
remains in its infancy. We employ a semi-quantitative
approach aimed at understanding the basic phenomena
is random diode arrays. In Sec. IV we analyze the
main mesoscale effects that show up in macroscopic volt-
age, current, their fluctuations, and the phenomenon of
nonuniform degradation. In Sec. V we describe our at-
tempts of developing more quantitative theory of random
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diode arrays. Based on our understanding, in Sec. VI we
suggest some practical ways of blocking the nonunifor-
mity effects. Sec. VII contains conclusions.

II. SURVEY OF MESOSCALE
NONUNIFORMITY OBSERVATIONS

Published reports on nonuniformities in thin-film de-
vices are rare, and to our knowledge have never been
reviewed. Yet, the available data show significant Voc

and electric current variations among nominally identi-
cal devices in noncrystalline thin-film structures. They
typically represent the results of device mapping using
either direct electrical measurements or more sophis-
ticated techniques, such as optical-beam-induced cur-
rent (OBIC), electron-beam-induced current (EBIC),
and scanning-tunnelling microscopy (STM). Below we
briefly review the results for several major materials.

For local microscopic Voc measurements (also termed
surface photovoltage for the case of devices without a
metal contact), drastic lateral variations ranging from
0.2 to 0.7 V between different grains were detected by
STM for a Cu(In,Ga)Se2 polycrystalline PV device.3
These fluctuations were attributed to observed local vari-
ations in the film chemical composition. For similar
devices, OBIC revealed microregions of reduced photo-
voltaic efficiency.4 The latter do not correlate with visi-
ble irregularities and were described as low Voc regions.
In large-area CuInSe2 PV modules, long length scale
(millimeter to centimeter) inhomogeneities were found to
correlate with lower device performance.5 In particular,
mapping of Voc and other parameters revealed nonunifor-
mities in average modules which were not present in the
best modules. They were attributed to macroscopic im-
perfections such as defects in the glass substrate or con-
taminants in the film. Considerable variations between
nominally identical CIGS devices were found.6

For CdS/CdTe polycrystalline PV cells, OBIC7 and
EBIC8–10 showed strong inhomogeneities dependent on
postdeposition treatments with length scales ranging
from microns to millimeters. For CdTe PV mod-
ules, OBIC indicated considerable inter– and intra– cell
variations,11 with the exception of some cases where cells
were laterally quite uniform.12 Time-resolved photolumi-
nescence in CdS/CdTe solar cells revealed variations in
recombination lifetime, by a factor of two to three across
one cm distances.13 Photoluminescence mapping14also
showed considerable nonuniformities on a large (∼ 1 mm)
scale whose topology depends on the excitation laser-
beam power. Scanning ballistic electron emission spec-
troscopy (a variation on STM) revealed the barrier height
dispersion of approximately 0.1 eV across an area of 10
µm2 in a crystalline CdTe/metal junction.15,16 For the
polycrystalline CdTe/CdS cell our STM mapping leads
to results17 similar to those for CIGS in Ref. 15. Map-
ping of a polycrystalline CdTe cell fabricated with a high
resistance contact18 showed ∼ 0.2 V electric potential

variations over a 1 cm length scale and lateral nonuni-
formities in the temperature field distribution under 1
sun irradiation. A typical 10 × 10 cm2 voltage map in
Fig. 3 shows both the true shunt feature and other lat-
eral nonuniformities. Nonuniform degradation of short-
circuit current in CdTe cells was noticed in Refs. 19 and
20. Strong effects of nonuniformity on commercial CdTe
photovoltaics were discussed in Ref. 21.

FIG. 3: Open circuit electric potential variations of
CdS/CdTe vapor transfer deposited sample with intention-
ally high resistive back contact (10 nm Chrome) under low
light of 0.01 sun. The main feature at X = 4 cm, Y = 3 cm
represents a true shunt with voltage drop down to 0.05 V (cut
off in the diagram).

For the case of a-Si:H, changes in photoinduced degra-
dation, defect density and PV parameters were found
to depend on nano- and longer length scales of struc-
tural inhomogeneity.1,22,23 Lateral nonuniformities in
Voc, j0 and other parameters were identified in micro-,
multi-, and polycrystalline silicon.24–30 In particular, it
was shown31–33 that forward current through a multi-
crystalline cell does not flow homogeneously and is dom-
inated by local sites of diode nature different from the
standard ohmic shunts.

Schottky diodes have proven to be inhomogeneous even
when based on crystalline semiconductors.34–38 This im-
plies again that barrier-controlled electron transport is
exponentially sensitive to local fluctuations in material
parameters. Existing theories attribute such fluctua-
tions either to electric charge density (which affects the
barrier height)39 or to fluctuations in defect concentra-
tion that affect the barrier tunnelling transparency.40
Highly nonuniform charge flow induced by ionized de-
fects within a crystalline semiconductor junction is ev-
idenced also in the pitted submicron morphology ob-
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tained by photoetching.41 Due to nonuniformities, an ef-
fective area involved in the current transport becomes
significantly lower than the geometric area of the metal
semiconductor/interface.42

Technologically, nonuniformity length scales ranging
from microns to tens of centimeters can originate from
different process steps. For example, polycrystalline film
growth kinetics is generically nonuniform. The dispersion
in grain sizes translates into variations in the curvature-
dependent impurity gas pressure at grain boundaries
which affects their doping levels and leads to micron-
scale nonuniformities. Submicron nonuniformities origi-
nate then from the intragrain fluctuations in doping and
stoichiometry.43 Variations with length scales longer than
the grain size are likely to be due to the postdeposition
grain coarsening treatment. Wet treatments and droplet
dry-up can lead to nonuniformities with 100 µm to 1 cm
scales governed by surface tension. Module-size length
scales originate from nonuniformities in the deposition
device. During the complete fabrication cycle, from de-
position to final product, nonuniformities of different na-
ture and length scales superimpose. We emphasize that
the processes involved are intrinsically nonuniform and
thus lateral inhomogeneities of the material parameters
in large-area, thin-film devices are unavoidable.

III. UNDERSTANDING LATERALLY
NONUNIFORM DEVICES

The explanation of the lateral fluctuations under con-
sideration lies in the device diode nature and in the pres-
ence of the resistive electrode. This is reflected in the
equivalent circuit of random microdiodes in Fig.4 that we
call a random diode array. In accordance with the above
discussion, each microdiode in the array is described by
the voltage-current characteristics of Eq. (2) where Voc is
a random parameter and fluctuations in j0 are neglected.
The microdiode size is of the order of the nonuniformity
length scale l.

In general, the effects of lateral micrononuniformities
depend on the relationship between the nonuniformity
length scale l and the screening length

L(u) =
√
|u|/ρj0, (3)

where u(< 0) is the local fluctuation of electric poten-
tial. The physical meaning of L is that the fluctuation in
electric potential is balanced by the potential drop j0L

2ρ
across the resistive electrode of linear dimension L. The
latter applies to both the cases of one-dimensional (D=1)
and two-dimensional (D=2) cell (see Sec. I). For D=1,
Lρ and j0L represent the resistance and current, and ρ is
understood as the resistance per unit length. For D=2,
the resistance is represented by the sheet resistance ρ and
the current is j0L

2. The maximum screening length Lmax

corresponds to a dead shunt (u = Voc). The minimum
screening length L0 is defined by Eq. (3) with u = kT/e .

FIG. 4: a, equivalent circuit of random microdiodes repre-
senting laterally nonuniform photovoltaic devices. Fat arrow
shows shunting current (Jw) through the weak diode, with
polarity opposite to that of the photogenerated currents sup-
plied by the majority of diodes. L is the screening length. b,
The equivalent two-diode circuit (inset) and J/V characteris-
tics of the weak diode (shunting the current Jw) and its more
robust neighborhood (supplying the current −Jw). Because
of the difference in the diode Voc’s the weak diode finds itself
under forward bias u.

Generally, the length L varies over a wide range depend-
ing on the sheet resistance and photocurrent. For exam-
ple, given the device characteristic parameters in Sec. I,
the screening length L0 ∼ 1 mm under 1 sun illumina-
tion. The typical ambient room light (and corresponding
current j0) is roughly by four orders of magnitude lower;
hence, L0 ∼ 10 cm and Lmax can be as large as 1 m. Note
however that both lengths can be shorten significantly by
using high resistance electrode (increasing ρ).45

The screening length in Eq. (3) was for the first time
derived in Ref. 44 to describe shunt and local bias screen-
ing. The minimum screening length L0 was introduced
much earlier46 in connection with photoeffects in nonuni-
formly irradiated p-n junctions. Because in Ref. 46 L0

appeared in a formal way, we find it appropriate to give
here its intuitive derivation similar to that of Eq. (3)
above. We start with recalling that [in accordance with
Eq. (2)] a potential δV + Voc slightly different from the
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open circuit voltage, |δV | ¿ Voc, forces the diode cur-
rent δV/Roc where Roc = kT/ej0 is the open circuit re-
sistance. Similar to the derivation of Eq. (3), δV is bal-
anced by the potential drop across the resistive electrode
of linear dimension L0, i. e. δV = jρL2

0ρ. Substituting
here j = δV/Roc gives

L0 =

√
kT

ej0ρ
(4)

for both the cases of D=1 and D=2. Note the main cause
of the difference between L and L0: in the latter case
the current is linear in a small deviation of the electric
potential from Voc. To the contrary, in the case of strong
local perturbations, it was independent of the potential
and close to its saturated value j0.

Eqs. (3), (4) describe screening of a point perturba-
tion. For a system of multiple random diodes, we first
point out a trivial case when the screening length is much
shorter than the nonuniformity length scale ( l >> L )
and the neighboring units are electrically insulated. The
observed quantities then correspond to a locally tested
microdiode. Note that because the regions at distances
larger than L make no contribution, L sets the upper
limit to the size of an efficient cell.

Given the range of L from ∼ 1 mm to ∼ 1 m and the
much shorter fluctuation length scale l (∼ 1 µm), the op-
posite limiting case of strongly interacting microdiodes,
l << L is practically important. This case is illustrated
in Fig.4 where two diodes in parallel mimic a weak ele-
ment (low Voc) and its more robust neighbors (high Voc).
The former finds itself under forward bias u and corre-
spondingly strong positive current [cf. Eq. (2)]

jw ≈ j0 exp (|eu|/kT ) (5)

supplied by the diodes in the surrounding region within
the screening length. A weak microdiode robs currents
from a large number

NL = jw/j0 = (L/l)D
>> 1 (6)

of its more robust neighbors, thereby significantly lower-
ing the device efficiency. Such non-ohmic shunting does
not affect the performance in reverse bias, as do the stan-
dard ohmic shunts.

By expressing the ratio jw/j0 from Eqs. (5) and (6)
one can define the characteristic crossover potential

uc =
DkT

e
ln

(
L

l

)
, (7)

between the regimes of weak and strong local
perturbations.47 Its physical meaning is that a weak bare
perturbation u < uc is completely levelled out (down to
the thermal potential kT/e) by large screening photocur-
rents in the range L. To the contrary, because there is not
enough photocurrent, a strong bare perturbation u > uc,
cannot be screened completely; its screened value u− uc

causes noticeable lateral potential variation.

FIG. 5: An example of numerically simulated voltage (V )
across a ’foreign’ diode of open-circuit voltage Voc imbedded
into a large system of equivalent diodes of the open-circuit
voltage V each. Straight line shows the approximation in Eq.
(8).

In particular, a single weak diode whose Voc is lower
than the surrounding media potential (V ) by less than
uc, finds itself under potential V = V . However, a weaker
diode of Voc < V − uc will be under potential V < V ,
that is

V =
{

V for Voc > V − uc

Voc + uc otherwise (8)

The approximation of Eq. (8) is illustrated in Fig. 5.
One other reading of Eq. (8) is that there exists a

parameter

ξL ≡
(

l

L

)D

exp
[
e(V − Voc)

kT

]
, (9)

such that the weak diode effects are relatively small when
ξL ¿ 1 and are significant when ξL À 1.

Eq. (6) needs an obvious correction if there are sev-
eral equally weak diodes in the region of the length L.
More specifically, we note that, side by side with the
above-defined L, there is another characteristic length
describing the system of random diodes. This is the cor-
relation radius R. Its standard physical meaning is that
the system is macroscopically uniform on length scales
longer than R. A simple nonrestrictive example is a bi-
modal Voc distribution representing identical weak (low
Voc) diodes imbedded in the uniform matrix of more ro-
bust units. For the case of bimodal distribution, R is the
average distance between the nearest weak diodes. To es-
timate R for a continuous Voc distribution we note that,
in accordance with Eq. (2), the number of significantly
different microdiodes in the system is e∆/kT , where ∆
is the characteristic width of the distribution. Because
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each of the diodes has the linear dimension l, we find
R = l (e∆/kT )1/D. The inequality R << L is consistent
with the available data in Sec. II. Replacing L → R
and combining Eq. (6) with Eq. (5) gives the maximum
local bias (across the weakest microdiodes) and the cor-
responding screening length in the system,

uw = D
kT

e
ln

(
R

l

)
, Lw = L0

√
D ln

(
R

l

)
. (10)

Thus, a weak diode is biased significantly, uw > kT/e and
its screening length is macroscopically large, Lw >> l.

Spacial fluctuations in the weak diode concentration
cause the electric potential and current fluctuations of
the length scales of the order of L. To estimate these
effects in a system of N = (L/R)D À 1 weak diodes
we note that the relative fluctuation in their number is
δN/N ∼ 1/

√
N ∼ (R/L)D/2. Taking into account that

each weak diode consumes exponentially strong relative
current exp[e(V − Voc)/kT ], one can define a disorder
parameter

ξR ≡
(

R

L

)D

exp
[
2
e(V − Voc)

kT

]
, (11)

such that the disorder effects are small when ξR ¿ 1 and
are significant when ξR À 1. ξR describes the relative
dispersion in the weak diode currents. In deriving Eq.
(11) all the weak diodes were, for simplicity, assumed to
have the same Voc (lower than the average voltage V ).
In Sec. V the parameter ξ ≈ ξR is derived in a more
rigorous way for a general case where weak diodes can
have different Voc’s [see Eqs. (34) and (36)] and is shown
to be a figure of merit for the weak diode effects.

In the above we have been assuming implicitly the Voc

distribution to have an effective cut-off width ∆. A con-
ceivable alternative model assumes a probability distri-
bution of open circuit voltages, g(Voc), having a long ex-
ponentially decaying tail. In the latter case the situation
is considerably different from that described by Eq. (10),
that is, very rare but extremely weak diodes will rob the
most current. The correlation length then becomes expo-
nentially large and is determined by the optimum fluctu-
ation that finds the weakest diode with finite probability.
This occurs when the product g (Voc) exp (−eVoc/kT ) is
a maximum. Assuming, for example, the Gaussian dis-
tribution with the dispersion ∆2 this model yields the
correlation radius

R = l exp
[(

∆e/kT
√

D
)2

]
, (12)

which at low temperatures can exceed both the screening
radius and the linear dimensions of the device.

IV. MESOSCALE EFFECTS OF
MICRONONUNIFORMITIES

Micrononuniformities have significant effects on the
macroscopic voltage and current as well as the device

degradation as discussed below. They are determined
by the length scales of the order of the above introduced
screening length, L ∼ 1mm to 1 m, which may be compa-
rable to the devices size; we call these effects mesoscale.

A. Macroscopic voltage

The random diode array in Fig.4 can be simulated by
numerically solving the corresponding Kirchhoff’s equa-
tions for a given random input parameter distribution.
In Fig.6 the calculated output parameter distributions
show indeed weak microdiodes whose Vocs are lower than
the local electric potential V ; they force strong positive
currents. Under open circuit, they balance small nega-
tive currents flowing through the majority of microdiodes
(with V < Voc). The electric potential V varies much less
than Voc because its fluctuations are averaged out over
N >> 1 mutually interacting microdiodes.

FIG. 6: Simulated open-circuit voltage (Voc), electric poten-
tial (V ), and transverse electric current (j) distributions in an
open-circuit system of random diodes. Rare strong positive
currents correspond to weak diodes balancing the majority of
robust diode currents, which are negative. Note that the ro-
bust diode negative currents are practically the same as they
would be under short-circuit conditions. The correlation ra-
dius (R) and the weak diode screening radius (Lw) are also
shown.

For the case of L >> R it is possible to describe
the macroscopic electric potential analytically. Consider
N >> 1 diodes occupying a volume of linear dimension
x << L, but still macroscopically uniform in the sense
x >> R. Because x << L, the resistive potential drop
across the domain is relatively small and the diodes are
under almost the same potential V . The latter can be
found by setting to zero the sum of N = (x/l)D random
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currents [each given by Eq. (2) with V = V ],

V = −kT

e
ln

〈
exp

(
−eVoc

kT

)〉

N

. (13)

Since N >> 1, the above average is close to the true
arithmetic average, which can be calculated based on the
statistical distribution for Voc. Following Eq. (13), the
characteristic potential fluctuation is

δV =
kT

e
√

NL

δ [exp (−eVoc/kT )]
〈exp (−eVoc/kT )〉NL

, (14)

where we have taken into account that independent fluc-
tuations have a linear dimension x = Lw. Eqs. (13)
and (14) agree well with the results of numerical simu-
lations. For example, the uniform Voc distribution with
the lower bound Voc,min and width ∆ = Voc,max−Voc,min

is characterized by

V = min [Voc,min + (DkT/e) ln (R/l) , Voc,max] (15)

and

δV = ∆
(
l2/LwR

)D/2
. (16)

Because for the opposite case of R À L the above
consideration fails, we develop the effective medium ap-
proach. Along the standard lines, the effective medium
sought is an imaginary homogeneous system whose pa-
rameters coincide with the average parameters of the
non-homogeneous system under consideration. Consider
a single foreign diode embedded into a uniform effective
medium consisting of identical diodes of the open circuit
voltage V . In our approximation V is the only effective
medium parameter. The voltage drop V across the for-
eign diode is a function of its bare open circuit voltage
Voc and V ,

V = V (Voc, V ). (17)

In the original nonuniform system we apply Eq. (17) to
an arbitrary diode and approximate its surroundings by
the effective uniform medium. Selfconsistency dictates
that, as averaged over all such diodes, the voltage V in
Eq. (17) is equal to the effective medium open circuit
voltage,

V =
∫

dVocg(Voc)V (Voc, V ), (18)

where g(Voc) is the probability distribution of microdiode
open circuit voltages.

To describe the dependence in Eq. (17) we employ
the approximation in Eq. (8). Using for simplicity the
uniform distribution g = 1/(Voc,max−Voc,min) Eqs. (18),
(8) yield

V = min
[
Voc,min +

DkT

e
ln

(
L

l

)
, Voc,max

]
. (19)

FIG. 7: Electric potential distribution along the resistive elec-
trode, which is the TCO for the standard cells and 5 nm Cr
contact for the high resistive electrode cells. The measuring
probe (fat arrow) applies voltage bias V. The cases of (1) small
and (2) large L/l are shown. For illustration purposes, the
cell is uniform to the left of the probe and nonuniform to the
right of it. In the case (1) the nonuniformities are screened
(L1 ¿ d) and do not affect the current collection, as opposed
to the case (2) where they compete for the current with the
probe (L2 À d).

As applied to the former case of R À L, the result in
Eq. (19) changes by R replacing L under the logarithm,
which makes it identical to that in Eq. (15) and thus adds
credibility to the present effective medium approach.

In general, since the balance of currents (rather than
Voc) determines the average macroscopic potential, the
weak diode contribution is exponentially significant; in
particular, a strong inequality V > 〈Voc〉 takes place, as
is also illustrated in Fig.6. In other words, under open-
circuit conditions, the recombination of photogenerated
electrons occurs mostly through weak diodes, as opposed
to the ideal system where the recombination is spatially
uniform. The degree of nonuniformity in local Voc needed
to cause the above qualitative difference is as low as sev-
eral kT/e, well within the observed range of the Voc fluc-
tuation data. (See Section II.)

B. Macroscopic current

Under working conditions, the current is partially con-
sumed in the external circuit. Its flow corresponds to
the electric field Ej , which is a maximum at the prox-
imity of a contact (probe) and vanishes at some point
where the current is zero (for example, Ej = 0 at the cell
edges; see Fig. 7). At a point with coordinate x ≤ d one
can estimate Ej (x) ∼ |j| ρd (1− x/d) for both the cases
of D=1 and D=2, where j is the measured current den-
sity. In regions where the field is weak the conditions are
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close to that of open circuit. In such a quasi-open-circuit
region weak microdiodes are most detrimental and may
rob a significant amount of current. The size of that re-
gion is determined by the condition Ej (x) = Ew, where
Ew ∼ uw/Lw ∼

√
uw |j| ρ is the weak microdiode field.

Because the latter decreases with j slower than Ej ∝ j,
it is clear that the size of the quasi-open-circuit region
increases and weak microdiodes become more important
at low currents. More specifically, the dimension of the
region is ∆x = Lw. As seen from the definition of Lw in
Eq. (10), ∆x and the current loss decrease with |j (V )|
and are almost minimum under short-circuit conditions
where the current is close to its maximum value. Forward
bias decreases |j (V )|, thus increasing Lw and the current
loss. As a result the curvature of the I/V becomes more
gradual than that of the ideal diode. The latter feature
is often observed and referred to as low fill factor (FF ).

C. Fluctuations

One verifiable prediction of the above picture is that
the relative fluctuations of the main device parameters
will diverge under low light, namely for D=2

δJsc

Jsc
,
δVoc

Voc
,
δ (FF )

FF
∝

{
I−1/2 for I < Ic,
const for I > Ic.

(20)

To explain Eq. (20) we proceed from the fact that a
point lateral nonuniformity causes the electric potential
scaling as V (r/L) with the coordinate r. The correspond-
ing micro-current then becomes δj ∝ ∇V ∝ L−1. When
L/d ¿ 1, the current fluctuation felt by the probe is
δJ ≈ δj

√
N ∝ L−1LD/2 ∝ I(D−2)/2 , where N ∼ LD is

the number of shunts (weak diodes) in the active domain
∼ LD (see Fig. 7). In the mean time, as is also seen from
Fig. 7, the average short-circuit current, Jsc ≈ Voc/ρ is
logarithmic in intensity, simply following Voc ∝ ln Jsc.
As a result, the relative current fluctuation δJsc/Jsc ∝
I(D−2)/2 is practically independent of the light inten-
sity when L/d ¿ 1 and D=2. In the low light regime,
L/d À 1 the number of shunts N does not depend of L
and is determined by the entire device area, while Jsc is
proportional to the light intensity. Incorporating these
changes yields δJsc/Jsc ∝ 1/LI ∝ 1/

√
I. The crossover

intensity Ic between the two regimes is determined by
the condition L = d. (Note that in the 1D case the di-
vergency ∼ I−1/2 holds both for L ¿ d and L À d.) It
is straightforward to extend the above reasoning to the
parameters Voc and FF . Because Voc ∝ ln Jsc, one gets
δVoc/Voc ∝ δJsc/ (Jsc ln Jsc) ∼ δJsc/Jsc. The fill factor is
sensitive to both the current and the potential (although
the exact dependence is not known). In the first approx-
imation one can write δFF/FF ∼ δJsc/Jsc + δVoc/Voc.
Thus, the relative fluctuations in Voc and FF depend on
the light intensity similarly to that of Jsc and the FF
relative fluctuation is roughly twice as large as the other
two.

FIG. 8: The average PV parameters open-circuit voltage Voc,
short-circuit current Jsc and fill factor FF (solid symbols and
lines), and their relative standard deviations (open symbols,
dashed lines) versus light intensity normalized to the respec-
tive values at 1 sun and measured for an ensemble of 130
vapor transport deposited cells. Note the logarithmic scale:
the standard deviations increase by a factor of 3 as the light
intensity decreases by a factor of 10. The dotted line shows
the predicted slope of the light intensity to the power -0.5.

To verify the prediction in Eq. (20) we studied fluc-
tuations in the main PV parameters of 180 standard
CdS/CdTe cells (efficiencies in the range of 10%) made
by vapor-transfer deposition as described in Ref. 14.
These cells are thin-film junctions sandwiched between
two roundish (D=2) electrodes (area 1.1 cm2), of which
one is the TCO with sheet resistance ρ = 15Ω/¤ and the
other is a metal layer of negligibly small resistance. Our
results in Fig. 8 are in excellent agreement with Eq. (20)
(see also Ref. 45). Our estimate for the crossover inten-
sity Ic ∼ 0.1 sun is consistent with the observations when
we take L ∼ L0 [consistent with Eq. 10)]. We have also
verified that the relative fluctuations in FF are roughly
twice as large as that in Jsc and Voc.

D. Degradation

Another significant effect is nonuniform
degradation,18–20 caused by the electric current lo-
calization in a weak microdiode. This entails a
corresponding increase in the carrier concentration, local
surface charge, and Joule heat. The related degradation
mechanisms are (i) electromigration of impurity ions;
(ii) accelerated defect creation by excessive local carrier
concentration; (iii) local electrochemical modification
(corrosion, etc.) induced by ions from the ambient
attracted to the excessive electric charges in the weak
microdiode ends; (iv) direct action of locally increased
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current or heat. All the above mechanisms will make
the originally weak microdiodes degrade still more, thus
increasing the degree of nonuniformity and accelerating
the degradation: the laterally nonuniform system turns
out to be unstable under light-induced or other bias.

Shown in Fig. 9 is an example of light-induced degra-
dation where the cells were half-screened under the light
soak at open circuit. After the soak, the screens were re-
moved and the formerly screened (dark) and open (light)
halves were electrically isolated from each other. The
main observations are (i) the light and dark half degrada-
tions are comparable; (ii) the Voc degradation is uniform
so that light and dark halves degrade equally; (iii) the
short-circuit current Jsc degrades nonuniformly so that
either the light or the dark half deteriorates significantly
but not both. Two conclusions can be made. First, it
is not the light per se, but rather light-induced forward
bias that causes the degradation (since there is little dif-
ference between the screened and open part degradation,
and the screening length L is greater than the cell size).
Second, the degradation does result in weak diodes (in ei-
ther part of the cell) that rob significant current.18 Both
conclusions are consistent with the above-described pic-
ture of nonuniform degradation. We note that the phi-

FIG. 9: Relative degradation of light and dark halves of half-
screened cells under light soak. Each datum point corresponds
to the two halves of one cell that had been half screened under
the light soak. Dashed lines represent linear trends. Positive
and negative values are chosen to represent the light-induced
parameter decrease and increase, respectively. A gray circle
sketches a cell broken into the light (L) and dark (D) halves.

losophy of nonuniform degradation is not unique to the
subject of this paper. Other examples, such as mechani-
cal, electrical, and biological breakdowns, also show how
nature concentrates stress on nonuniformities as different

systems deteriorate. It is the more surprising then that
the nonuniform degradation scenario has so far remained
overlooked in photovoltaics and remains to be explored
much more fully.

Overall, we conclude that the effects of micrononuni-
formities are stronger under forward bias and/or low
current conditions and result in current loss, low fill-
factor behavior and fluctuations in device parameters.
In addition, lateral micrononuniformities cause progres-
sive nonuniform degradation. Furthermore, while being
localized spatially they have a detrimental effect on the
entire device.

V. TOWARDS QUANTITATIVE THEORY OF
RANDOM DIODE ARRAYS

A problem of random diode arrays introduced in the
present work, is a new nonlinear problem that properly
belongs in the theory of disordered systems. Its quanti-
tative analysis is quite involved and has not been fully
developed. In fact, our semi-quantitative estimates in
the preceding sections were aimed at partially substitut-
ing for such an analysis. In this section we describe one
more rigorous approach to the problem.

The electric potential distribution in the diode circuit
of Fig. 4 can be described more quantitatively based on
the ideal diode equation (2) and the Ohm’s law:

∇i = −j0

[
exp

(
e(V − Voc)

kT

)
− 1

]
, (21)

ρi = −∇V, (22)

where i is the lateral current (current density) in the resis-
tive electrode for D=1 (D=2), V is the electric potential,
and j0 is the specific transversal currents (per length for
D=1 or per area for D=2) defined in accordance with Eq.
(2).

For the case of a point perturbation in the uniform
system, Eqs. (22) reduce to the dimensionless form

∇2φ = exp(φ)− 1, (23)

where

φ =
e(V − Voc)

kT
, y =

x

L0
, L0 =

√
kT

eρj0
, (24)

and∇ is calculated with respect to a new variable y. Note
that Eq. (24) reintroduces in a more rigorous way the
minimum screening length L0. The solutions to Eq. (23)
were analyzed for different types of point perturbations
in Ref. 44.

For a nonuniform system we consider the case of
strongly interacting diodes, l ¿ L and assume uncor-
related disorder. We use the dimensionless units of Eq.
(24) where Voc is replaced by V defined in Eq. (13). In
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these units, the inequality l ¿ L becomes l ¿ 1. It is
convenient then to introduce a random variable

ζ = exp
(
−e(Voc − V )

kT

)
− 1, 〈ζ〉 = 0, (25)

whose correlation function has the form

〈ζ(0)ζ(r)〉 = Bδ(r), B = const. (26)

Here δ(r) is the delta-function of the coordinate r in the
film plane. [Because of the micro-diode finite size, δ(r)
should be understood as having a small yet finite width
l ¿ 1].

In place of Eq. (23), we now have

∇2φ = (1 + ζ) exp(φ)− 1, (27)

Given the statistics for ζ Eq. (27) can be used to de-
rive the distributions for the electric potential and cur-
rent. From the perspective of the theory of disordered
systems, Eq. (27) represent a new nonlinear problem.
Our approach to its solution is somewhat similar to the
well-known adiabatic approximation and utilizes the in-
equality l ¿ 1. We present the electric potential as a su-
perposition of the short-range (φs) and long-range (φL)
components,

φ = φs + φL, |φs| ¿ 1, 〈φs〉 = 0. (28)

φs has the characteristic space scale l ¿ 1. Its ampli-
tude is assumed to be small, since the neighboring micro-
diodes separated by distance l and correspondingly small
electrical resistance are at almost the same electric po-
tential; the smallness condition is derived below [see Eq.
(39)]. The long-range component is not necessarily small
and is approximately constant on the scale of l.

Linearizing Eq. (27) in |φs| ¿ 1 and averaging over a
region of linear dimension x such that l ¿ x ¿ 1 leads
to the equation for the long-range component

∇2φL = (1 + 〈φsζ〉x) exp(φL)− 1. (29)

In accordance with the central limit theorem, a random
quantity 〈φsζ〉x should obey the Gaussian statistics. Its
fluctuations are relatively small, since the averaging is
taken over a large number of microdiodes.

Eliminating the terms absorbed by Eq. (29) and ne-
glecting φs in its right-hand-side, linearized Eq. (27) be-
comes

∇2φs = ζ exp(φL), (30)

where φL is considered constant. A system of cou-
pled equations (29) and (30) describe the long-range and
short-range components of the electric potential.

We start with finding the average 〈φsζ〉x that appears
in Eq. (29). This is achieved through the correlation
function 〈ζ(0)φs(r)〉, which turns into 〈φsζ〉x as the dis-
tance is set to the minimum length scale, r = l. To

estimate 〈ζ(0)φs(r)〉 we multiply Eq. (30) by ζ(0) and
then average. This leads to the Poisson equation

∇2〈ζ(0)φs〉x = Bδ(r) exp(φL), (31)

whose particular solution is

〈ζ(0)φs〉x = exp(φL)
{

B|r|/2 for D = 1,
(B/2π) ln r for D = 2.

(32)

Constants that may appear in its general solution must
be determined from the boundary conditions.

Because Eq. (30) is restricted to the region r ¿ 1, the
standard boundary condition is hard to impose. Offering
an alternative is the observation that, in the absence of
other characteristic lengths, the correlation between ζ
and φs should decay over distances r approaching the
correlation length L [L = 1 in the units of Eq. (24)]. We
take the latter observation as a boundary condition. The
required decay automatically follows from Eq. (32) for
the case of D=2 where the logarithm decreases as r → L.
For D=1, a negative constant needs to be added to the
solution in Eq. (32) to ensure the decay. [The latter
analysis of 〈ζ(0)φs〉 can be easily verified for the case of
a small disorder where Eq. (27) becomes linear in φ.]

Substituting into Eq. (32) r = l and adding −BL/2
for the case of D=1, yields

∇2φL = − 1
4ξ

[exp(φL + ln 2ξ)− 1]2 +
1
4ξ
− 1, (33)

with

ξ =
B

2
·
{

1 for D = 1,
(1/π) ln(1/l) for D = 2.

(34)

We observe that, while aimed at describing random diode
arrays, Eq. (33) does not contain random variables. As
explained in what follows, the factors that account for
the disorder are different for the cases of small and large
ξ.

One immediate result of the above analysis is that
there exists a critical disorder, ξc = 1/4, such that the
electric potential and current distributions are qualita-
tively different for the cases of ξ < ξc and ξ > ξc. In the
case of subcritical disorder ξ < ξc one can calculate the
average potential in the system by setting the left-hand-
side zero in Eq. (33),

〈φ〉 = ln
(

1−√1− 4ξ

2ξ

)
. (35)

This solution fails when ξ > 1/4. Furthermore, analyzing
the corrections δϕL ≡ ϕ−〈ϕ〉 by perturbation technique,
it is straightforward to see from Eq. (33) that the char-
acteristic length scale and amplitude of nonuniformities
diverge as ξ approaches ξc = 1/4. Below we consider the
cases of subcritical and supercritical disorder separately.

The parameter ξ is a figure of merit for the nonuni-
formity effects in the system under consideration. To
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FIG. 10: 1D φL distribution for the case of subcritical dis-
order numerically simulated for a random diode circuit with
uniformly distributed Voc. The diode number plays the role
of the linear coordinate. The distribution is characterized by
the average 〈eVoc/kT 〉 = 10 and the corresponding standard
deviation 2. Note the scale of fluctuations, |δφL| ¿ 1.

explain its physical meaning we consider the case of bi-
modal Voc distribution where weak diodes are found with
a probability c(¿ 1). The coefficient B in Eq. (26) can
be then estimated (in conventional units) as

B ∼ c

(
l

L

)D

exp
[
2
e(V − Voc)

kT

]
. (36)

Taking into account also the estimate c ∼ l/R, it is
straightforward to see that ξ ≈ ξR where the average
distance between the weak diodes R and the disorder pa-
rameter ξR were discussed in Sec. III [see Eq. (11)].
Hence, ξ represents the relative dispersion of the weak
diode bare currents.

Subcritical disorder. The required average 〈ζ(0)φs〉x
was calculated in the above through the correlation func-
tion 〈ζ(0)ζ(r)〉 defined for the infinite system in Eq. (26).
As was discussed after Eq. (29), the finite size effects will
make B a Gaussian random quantity with the relative
standard deviation of the order of (l/x)D/2 ∼ lD/2 ¿ 1.
For small ξ ¿ 1 the right-hand-side in Eq. (33) f(φ) is
dominated by the contribution that is inversely propor-
tional to ξ and the variations δξ become important source
of randomness. Because the latter are small, so are the
variations in φ. They satisfy the linearized equation (33)
that is

∇2δφL = 〈φ〉
√

1− 4ξδφL − δξ exp〈 2φ〉. (37)

We conclude that fluctuations δφ obey Gaussian statis-
tics and are small in the measure of δξ. As an illustra-
tion, shown in Fig. 10 is a distribution δφ(x) numerically
simulated for a system of random diodes with subcritical
disorder. It has a smoothly varying shape similar to what
is typically considered random potential in the existing
theory of disordered systems (see for example Ref. 48).

FIG. 11: Right-hand-side f(φ) of Eq. (33) for the cases of
subcritical (ξ = 1/8) and supercritical (ξ = 3/2) disorder.
Note that f(φ) < 0 in the latter case.

FIG. 12: A fragment of Voc and reduced electric potential φ
distributions for the case of supercritical Gaussian disorder
numerically simulated for a 1D random diode circuit. Note
singular φ shapes in the proximity of minima, which coincide
with the lowest Vocs, and parabolic coordinate dependence of
almost the same curvature far from the minima.

Supercritical disorder. To understand the case of ξ >
ξc we note that the right-hand-side of Eq. (33), f(φ)
(and thus the curvature ∇2φ) is everywhere negative as
illustrated in Fig. 11. The negative curvature exponen-
tially increases in absolute values as φ increases above its
maximum φm = ln(1/2ξ). This means that the spectrum
of φ cannot span much beyond φm, since any increase in
φ (i. e. positive ∇φ) is strongly limited by exponentially
large negative ∇2φ.

For large ξ À ξc and φ < φm we find f(φ) ≈
−1. Therefore, φ(r) is close to a negative curvature
paraboloid and is unbounded below. This is consistent
with the above observation that the average 〈ϕ〉 is not
defined for the case of ξ > ξc. The unbounded spectrum
exists in the framework of the approximation employed.

We now consider lower boundary effects beyond that
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approximation. The lowest φ in the system corresponds
to the weakest diode. In the framework of our approx-
imation, it exhibits a singularity where ∇φ undergoes
a finite change and the electric potential cannot be de-
composed into a sum of long- and short-range compo-
nents. Taking such singularities into account, we con-
clude that the electric potential has a piecewise continu-
ous structure. It is formed by a set of negative curvature
paraboloids (far from weak diodes where the approxima-
tion of smoothly varying potential is valid), connected
in a singular way at weak diodes. The singularities take
place at the diodes that are the weakest in the neigh-
borhood of screening length size each. This understand-
ing has been confirmed by our numerical simulations for
both the cases of 1D (Fig. 12) and 2D (Fig. 13) ran-
dom diode circuits, which show, indeed, randomly lo-
cated negative curvature paraboloids forming cusps in
connection points. Note that for the case of supercriti-
cal disorder the electric potential spatial nonuniformity is
mainly due to random spatial distribution of weak diodes.

If the Voc distribution is not a bimodal, then the
location of singularities needs to be further specified.
A diode weakest in its screening length neighborhood
(Voc = Voc,min) will obviously cause a singularity. On
physical grounds, a less weak diode at distance r in the
neighborhood will cause a singularity if its Voc is less than
Voc,min + j0ρr2 to make it a local current sink. While
consistent with the results of numerical modelling this
remains a plausible assumption.

Note that the piecewise continuous type of disorder re-
vealed in the above study is rather unusual from the per-
spective of the existing theory of disordered systems.48
This unique feature adequately reflects the fact that ran-
dom microdiodes in the array are exponentially different.
The weakest of them dominate the electric potential dis-
tribution in the system and make all more robust units
immaterial.

As an example consider one implication of the above
theory, which is the statistics of stronger-than-average
”shunting” currents in a system of random microdiodes.
The probability of finding no weak diode in the region of
large radius r > R is given by the Poisson distribution
exp[−(r/R)D], where R is the average distance between
weak diodes. Because the amplitude of electric potential
δφ is parabolic in r, we get δφ ∝ r2. The electric current
can be expressed as J ∼ δφ/(ρr(2−D)) where D = 1, 2 [see
the discussion after Eq. (3)]. As a result the probability
distribution for the current takes the form

g(J) ∝ exp(−J/J0) for J > J0, (38)

for both the cases of D=1 and D=2 where J0 = j0R
D =

const. This prediction is verified by numerical simula-
tions in Fig. 14: good agreement is obtained.

The above-developed approximation is based on lin-
earization of Eq. (27) with respect to φs, and remains
valid when 〈φ2

s〉 ¿ 1. Multiplying Eq. (30) by φs(0),
averaging, and taking into account Eqs. (32) and (34),

FIG. 13: Reduced electric potential φ distribution for the case
of 2D supercritical disorder numerically simulated for a ran-
dom diode circuit of 31x31 diodes. Note piecewise continuous
topography with cusp shapes in the proximity of minima and
paraboloidal coordinate dependence far from the minima.

FIG. 14: Distribution of weak diode electric currents in a sys-
tem of random diodes with supercritical disorder: numerical
simulations (histogram) vs. analytical fit of Eq. (38).

yields

〈φ2
s〉 = ξ exp(2φL). (39)

The criterion 〈φ2
s〉 ¿ 1 is obviously satisfied for the case

of subcritical disorder ξ ¿ 1. For the alternative case
of ξ À 1 we take into account that the spectrum of φL

is confined to the region φL
<∼ ln(1/2ξ). As substituted

in Eq. (39) this gives 〈φ2
s〉 <∼ 1/4ξ, which satisfies the

criterion 〈φ2
s〉 ¿ 1 in the far supercritical region ξ À

ξc = 1/4. Our approximation fails in the critical region
ξ ∼ ξc.

We shall end this section by noting that the above ap-
proximation, while giving a consistent picture of the elec-
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tric potential distribution in a system of random diodes,
leaves many important questions unanswered. Those of
the statistics of random electric potential and currents,
the boundary conditions for finite systems, and integral
I-V characteristics seem to be the most appealing ones.
We hope to address these issues elsewhere.

VI. BLOCKING THE EFFECTS OF
NONUNIFORMITIES

As a semiconductor thin-film device is deposited, not
much can be done to improve its disordered structure.
The known remedies are chemical treatments (such as
CdCl2 for CdTe photovoltaics) and anneals, which in-
crease and equalize grain sizes and otherwise promote
uniformity. Here we would like to point toward other
remedies, which, while keeping the semiconductor struc-
ture intact, can significantly reduce the device nonunifor-
mity. As is seen from Fig. 4, the steeper the I/V curve in
the forward bias region V > Voc, the stronger the impact
of a weak diode. (In particular, the exponential bias de-
pendence in Eq. (2) led to the exponentially strong weak
diode effects as discussed above.) The exponential steep-
ness is known to reduce to a linear bias dependence when
there is a considerable series resistance added to the ele-
mental diode. Hence, increasing the series resistance will
mitigate the detrimental effects on micrononuniformities.
We verified the latter argument by numerically simulat-
ing the circuit in Fig. 4 with series resistances added to
each of the random diodes: a significant suppression of
the electric current and electric potential lateral fluctua-
tions was indeed observed.

The above prediction of the beneficial role of series
resistance has two practical implications. First, the
general quest for decreasing the device series resistance
may not be justified in all cases. While this mini-
mizes the ohmic loss, it can simultaneously promote
losses due to micrononuniformity effects. The analysis
above shows that the series resistance should be care-
fully optimized to compromise between the ohmic and
the micrononuniformity-related losses. Such optimiza-
tion should open opportunities in thin-film device engi-
neering.

The second implication has to do with buffer-layer
effects,49 which, while proven generally positive, remain
poorly understood. We recall that the buffer layer is
generally a resistive, thin layer placed between the semi-
conductor and TCO. Because of its small thickness, it
does not add much to the device series resistance. In
the mean time it is known to minimize current losses in
the device and in some cases to improve the device sta-
bility. From the perspective of this paper, a beneficial
effect of the buffer layer is that it adds series resistances
to the weak diodes (or shunts). In understanding this
effect it is crucial to take into account the characteris-
tic micrononuniformity size l. The series resistance of
the ”clog” added by the buffer layer to a weak diode or

shunt, rbl ∝ l−2 is significant for small size micrononuni-
formities, but may have no effect on nonuniformities of
considerable lateral dimensions. Hence, the same buffer
layer may or may not have positive impact on the de-
vice performance and stability, depending on details of
the device technology affecting the micrononuniformity
length scale. We believe that the buffer layer should be
optimized based on the device uniformity characteristics.

Finally, we note that the above-discussed physics not
only explains how nonuniformities are detrimental to de-
vice performance and stability, but also suggests a cer-
tain way of levelling them out. Namely, because the sur-
face potential (local Voc) under the light varies across a
semiconductor film, electrochemical treatments sensitive
to the electric potential will act differently at different
spots. When properly chosen they should deposit clogs
onto the weak diode spots while leaving the robust parts
of the film practically intact, thus eliminating the most
significant sources of nonuniformity effects. It is likely
that in such treatments have already been found in sev-
eral cases by trial and error. In particular, that might
explain why different pre-contact treatments, including
weak etches and exposure to organics have a profound
effect on device parameters. We believe that our present
consideration provides the understanding to search ef-
fectively for the desired treatments. In our most recent
work50 we have verified the above prediction of the elec-
trolyte treatment effect: ∼ 50% increase in the device
efficiency was found.

VII. CONCLUSIONS

In conclusion, we have shown that large-area semicon-
ductor devices are intrinsically nonuniform, which makes
their physics qualitatively different from that of micro-
electronics. The nonuniformity length scales cover a
broad spectrum ranging from microns to meters. They
show up in many different types of experiments and for
the majority of thin-film semiconductors. We have also
found a characteristic screening length that ranges from
millimeters to meters and explains how a microscopic
nonuniformity can affect macroscopically large areas in
the film. Our theoretical model (of random diodes) ex-
plained some of the observed features. We described the
electric current and potential fluctuations and their effect
on the main parameters of thin-film devices. Our consid-
eration here has suggested certain ways of overcoming
these nonuniformity effects.

Our present consideration was mostly restricted to an
elemental PV cell. Another closely related application
should be mentioned where the concepts of nonunifor-
mity and random diode arrays can be extremely impor-
tant, which is the macroscopic circuitry of large area PV
modules and their field arrays. A typical PV module is
composed of a large number (∼ 100) linear cells in se-
ries. Because of the cell diode nature, these series will be
very sensitive to small variations in the cell parameters;
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hence, the problem of random diodes in series. Further-
more, in the field, photovoltaic arrays form more complex
circuits where, for example, blocks of many modules in
parallel are connected in series. Again, since the modules
have slightly different characteristics,2,51 the latter sys-
tems will belong to the class of random diode systems.
A relevant theoretical approach is needed to understand
their physics and optimize the design.

We hope this work will facilitate more systematic study
of nonuniformities in large area electronics. We believe
that enhanced understanding of the nonuniformity effects
will help to improve thin-film device performance and
stability in many applications. We hope also that a new
class of disordered systems that is the random diode ar-

rays presented in this work will attract more attention
to become a practically important challenging problem
in the physics of disordered systems.
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